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A. Additional Theoretical Results

A.1. Wealth-Consumption Ratio Approximation

We know from Epstein and Zin (1989) that the Euler equation for an arbitrary return

Ri,t+1 can be stated as

Et

[
βθ
(
Ct+1

Ct

)−γ (Zt+1 + 1
Zt

)−(1−θ)
Ri,t+1

]
= 1, (IA.1)

where θ = 1−γ
1−1/ψ and Zt = Pt/Ct denotes the wealth-consumption ratio. Intuitively, the first

(stochastic) term in the pricing kernel is consumption growth, Ct+1/Ct, and the second one

is the growth rate of the wealth-consumption ratio, Zt+1/Zt.

For the pricing of the return on the consumption claim, Euler equation (IA.1) simplifies

to

Zθt = Et

[
βθ
(
Ct+1

Ct

)1−γ
(Zt+1 + 1)θ

]
. (IA.2)

Based on the law of iterated expectations, equation (IA.2) can be written as

Zθt =
4∑
i=1

ξt+1|t(i)Z
θ
t,i, (IA.3)

where ξt+1|t(i) is i-the element of ξt+1|t and

Zθt,i = E

[
βθ
(
Ct+1

Ct

)1−γ
(Zt+1 + 1)θ

∣∣∣∣∣ st+1 = i, ξt+1|t

]
. (IA.4)

Equation (IA.3) says that the agent forms a belief-weighted average of the state and belief-

conditioned wealth-consumption ratios (IA.4).
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The univariate effects of changing beliefs about the volatility (mean) state while holding

the mean (volatility) state constant can be locally approximated. We can show that, given a

constant volatility, changes in the log wealth-consumption ratio are

∆zt+1 ≈ ∆bµ,t+1

(
1
θ

Zθµ=µh,σ − Z
θ
µ=µl,σ

bµ,tZθµ=µh,σ + (1− bµ,t)Zθµ=µl,σ

)
, (IA.5)

where Zµ,σ denotes the wealth-consumption ratio when expected consumption growth is µ

and consumption volatility is σ. Analogously, given a constant mean, changes in the log

wealth-consumption ratio are

∆zt+1 ≈ ∆bσ,t+1

(
1
θ

Zθµ,σ=σh
− Zθµ,σ=σl

bσ,tZθµ,σ=σh
+ (1− bσ,t)Zθµ,σ=σl

)
. (IA.6)

Equations (IA.5) and (IA.6) illustrate that changes in the log wealth-consumption ratio are

locally proportional to changes in beliefs. From an empirical asset pricing perspective, this

finding implies that changes in beliefs are priced in the cross-section since they affect the

wealth-consumption ratio.

Given equation (IA.3), the local univariate approximations (IA.5) and (IA.6) of the wealth-

consumption ratio are derived as follows:

∆zt+1 =
1
θ

ln

(
bt+1Z

θ
t+1,1 + (1− bt+1)Zθt+1,2

btZθt,1 + (1− bt)Zθt,2

)

=
1
θ

ln

(
(bt + ∆bt+1)Zθt+1,1 + (1− (bt + ∆bt+1))Zθt+1,2

btZθt,1 + (1− bt)Zθt,2

)

=
1
θ

ln

(
btPC

θ
t+1,1 + (1− bt)Zθt+1,2 + ∆bt+1(Zθt+1,1 − PCθt+1,2)

btZθt,1 + (1− bt)Zθt,2

)

=
1
θ

ln

(
1 +

∆bt+1(Zθt+1,1 − Zθt+1,2)

btZθt,1 + (1− bt)Zθt,2

)

≈ 1
θ

∆bt+1
Zθ1 − Zθ2

btZθ1 + (1− bt)Zθ2
.

A.2. Numerical Solution

Using equation (IA.3), the wealth-consumption ratio, Zt = Z(ξt+1|t), solves the functional

equation

Z(ξt+1|t) =

(
4∑
i=1

ξt+1|t(i)E
[
βθ(Z(ξt+2|t+1) + 1)θ

(
eµi+σiεt+1

)1−γ∣∣∣ st+1 = i
])1/θ

,
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where ξt+1|t(i) is the i-th element of ξt+1|t. We solve this equation as a fixed-point in the

wealth-consumption ratio. The grid for the belief state-vector has increments of size 0.025

and the expectation is approximated using Gaus-Hermite quadrature with 21 nodes. Three-

dimensional linear interpolation is used between grid points.

A.3. Cross-Sectional Asset Pricing Implications

For our empirical exercise, we assume that the log wealth-consumption ratio is approxi-

mately affine in the perceived first and second moments of consumption growth,

zt ≈ k +Aµ̂t +Bσ̂t.

This step provides a more meaningful economic interpretation for mean and volatility states.

In Table IA.I, we confirm the quality of this approximation based on simulations of the model.

We simulate 1,000 economies for 100 years at the quarterly frequency. In all three panels, the

representative agent has an EIS of 1.5 and a rate of time preference of 0.995. The coefficient

of relative risk aversion (RRA) increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C).

In the first regression of each panel, we regress the log wealth-consumption ratio, zt, on the

prior probabilities of being in a given state, ξt+1,t(i), i = 1, 2, 3. In the second regression, we

regress the log wealth-consumption ratio, zt, on the perceived first moment, µ̂t, and second

moment, σ̂t, of consumption growth. We report the (across-simulation) average regression

coefficient and regression R2.

Equation (IA.3) states that variation in the wealth-consumption ratio depends on the

beliefs about four states, three of which are linearly independent. In an exact implementation

of the model, the wealth-consumption ratio is thus a nonlinear function of three variables. The

first regression of each panel confirms that the log wealth-consumption ratio is approximately

affine in the prior probabilities about the state, with the regression R2 exceeding 99%.

The second regression of each panel confirms that the log wealth-consumption ratio is

approximately affine in the perceived first and second moments of consumption growth. This

approximation captures most variation in changes in the wealth-consumption ratio, with the

regression R2 exceeding 99%. Intuitively, the third prior probability captures the perceived
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Table IA.I
Wealth-Consumption Ratio

We simulate 1,000 economies for 100 years at the quarterly frequency. In all three panels,
the representative agent has an EIS of 1.5 and a rate of time preference of 0.995. The
RRA increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C). In the first regression
of each panel, we regress the log wealth-consumption ratio, pct, on the prior probabilities
of being in a given state, ξt+1,t(i), i = 1, 2, 3. In the second regression, we regress the log
wealth-consumption ratio, pct, on the perceived first moment, µ̂t, and second moment, σ̂t, of
consumption growth. We report the average regression coefficient and average R2.

Const. ξ(1) ξ(2) ξ(3) µ̂ σ̂ R2

Panel A: RRA=10, EIS=1.5

5.7345 −0.0050 −0.0077 0.0017 0.9973
5.7294 0.0069 −0.0022 0.9958

Panel B: RRA=20, EIS=1.5

5.7116 −0.0044 −0.0075 0.0022 0.9959
5.7071 0.0068 −0.0027 0.9945

Panel C: RRA=30, EIS=1.5

5.6899 −0.0037 −0.0073 0.0028 0.9938
5.6861 0.0066 −0.0032 0.9926
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comovement between the Markov chains for mean and volatility. However, since these two

Markov chains are independent by assumption, the third prior probability is redundant.

To test the model in the cross-section of returns, it is convenient to restate the fundamental

asset pricing equation (IA.1) in terms of betas,

Et[Rei,t+1] ≈ −Covt(Ri,t+1,mt+1)

= γCovt(Ri,t+1,∆ct+1) + (1− θ)Covt(Ri,t+1,∆zt+1)

= γCovt(Ri,t+1,∆ct+1) + (1− θ)ACovt(Ri,t+1,∆µ̂t+1) + (1− θ)BCovt(Ri,t+1,∆σ̂t+1)

= βic,tλc,t + βiµ,tλµ,t + βiσ,tλσ,t,

with

βc,t =
Covt(Ri,t+1,∆ct+1)

Vart(∆ct+1)
βµ,t =

Covt(Ri,t+1,∆µ̂t+1)
Vart(∆µ̂t+1)

βσ,t =
Covt(Ri,t+1,∆σ̂t+1)

Vart(∆σ̂t+1)

and

λc,t = γVart(∆ct+1) λµ,t = A(1− θ)Vart(∆µ̂t+1) λσ,t = B(1− θ)Vart(∆σ̂t+1),

where βic,t, β
i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect to consumption growth

and the conditional first and second moments of consumption growth, and λc,t, λµ,t, λσ,t are

the respective market prices of risk.

A.4. Equity Premium

To quantify the equity premium generated by our model, we first have to specify a process

for dividend growth. A common approach is to postulate a levered consumption process for

dividends such as D = Cλ. The Markov switching model allows a more general approach

by fitting a Markov model for the conditional first and second moments of dividend growth.

Specifically, we assume that log dividend growth follows

∆dt+1 = µdt + σdt εt+1 εt+1 ∼ N (0, 1),

where µdt ∈ {µdl , µdh} and σdt ∈ {σdl , σdh} follow the same Markov process as consumption.

Consequently, we do not reestimate the transition matrix of the Markov process but use the
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Table IA.II
Markov Model of Dividend Growth

This table reports parameter estimates of the Markov model for log dividend growth

∆dt+1 = µdt + σdt εt+1, εt ∼ N (0, 1),

where µdt ∈ {µdl , µdh} and σdt ∈ {σdl , σdh} follow independent Markov processes with transition
matrices Pµ and P σ, respectively. The consumption and dividend processes follow the same
Markov switching process as reported in Table I. We compute quarterly dividends for the
period 1955 to 2009 using the value-weighted CRSP index with and without distributions.
Standard errors are reported in parentheses.

µl µh σl σh

−0.5968 1.3969 1.2983 3.3912
(0.2355) (0.3164) (0.1015) (0.3901)

estimates reported in Table I. We compute quarterly dividends for the period 1955 to 2009

using the value-weighted CRSP index with and without distributions. Parameter estimates

are summarized in Table IA.II.

In Table IA.III, we report statistics about the risky and risk-free assets. We simulate 1,000

economies for 100 years at the quarterly frequency. In all three panels, the representative agent

has an EIS of 1.5 and rate of time preference of 0.995. The RRA increases from 10 (Panel A)

to 20 (Panel B) and 30 (Panel C). We report the average excess return, E[Re], the standard

deviation of stock returns, σ[R], the average risk-free rate, E[Rf ], and the standard deviation

of the risk-free rate, σ[Rf ]. In the last two rows of each panel, we also report moments of the

Markov switching model without learning, where the agent knows the state of the economy.

In the specification with RRA of 10, the model generates an annual risk premium of 1.3%,

stock return volatility of 7.7%, average risk-free rate of 2.8%, and risk-free rate volatility of

0.5%. This poor performance is not surprising since the Markov chain is not very persistent

compared to the specification of Bansal and Yaron (2004). For an RRA of 30, the model

generates a risk premium of 4.6%.

Table IA.III can also be used to quantify the importance of learning. In the last two rows
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Table IA.III
Model Implications

We simulate 1,000 economies for 100 years at the quarterly frequency. In all three panels,
the representative agent has an EIS of 1.5 and a rate of time preference of 0.995. The RRA
increases from 10 (Panel A) to 20 (Panel B) and 30 (Panel C). We report the average excess
return, E[Re], the standard deviation of stock returns, σ[R], the average risk-free rate, E[Rf ],
and the standard deviation of the risk-free rate, σ[Rf ]. In the last row of each panel, we also
report moments of the Markov switching model without learning, where the agent knows the
state of the economy.

E[Re] σ[Re] E[Rf ] σ[Rf ]
Panel A: RRA=10, EIS=1.5

Mean 0.0129 0.0772 0.0278 0.0046
10% 0.0038 0.0702 0.0257 0.0039
90% 0.0222 0.0845 0.0298 0.0054

No Learning 0.0096 0.0732 0.0340 0.0024
Power Utility 0.0029 0.0610 0.2404 0.0376

Panel B: RRA=20, EIS=1.5

Mean 0.0296 0.0758 0.0203 0.0085
10% 0.0208 0.0686 0.0163 0.0071
90% 0.0386 0.0829 0.0239 0.0099

No Learning 0.0190 0.0715 0.0334 0.0024
Power Utility 0.0062 0.1261 0.4696 0.0793

Panel C: RRA=30, EIS=1.5

Mean 0.0461 0.0739 0.0126 0.0124
10% 0.0367 0.0671 0.0070 0.0104
90% 0.0550 0.0807 0.0179 0.0143

No Learning 0.0275 0.0690 0.0328 0.0023
Power Utility 0.0098 0.1801 0.7080 0.1253
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of each panel, we report moments of the Markov switching model without learning, where

the agent knows the state of the economy. The difference between the mean excess return

generated by the full model and the model without learning is the learning premium. Holding

the EIS fixed at 1.5, for an RRA of 10 (Panel A), the learning premium is only 33 basis

points; for an RRA of 20 (Panel B), the learning premium increases to 1%; and for an RRA

of 30 (Panel C), the learning premium reaches 1.9%. So the fraction of the total excess return

coming from learning increases from 26% to 36% to 40%.

A.5. Consumption CAPM

While the theoretical motivation for our additional factors is easily established, it is not

obvious whether they are relevant empirically. It is possible that the additional factors are

strongly correlated with consumption growth, so that empirically a one-factor model holds,

albeit with a coefficient that represents two prices of risk.

To address this question, we repeatedly simulate economies following our estimated con-

sumption dynamics. Not surprisingly, realized consumption growth is strongly linked to beliefs

about the mean state, with correlations exceeding 60%. The unconditional correlation be-

tween realized consumption growth and beliefs about consumption growth volatility is close

to zero. Consequently, consumption growth might subsume some of the risk coming from

expected consumption growth in regressions of the consumption CAPM.

To test how well the consumption CAPM works on simulated data of the model, we assume

an RRA of 10 and an EIS of 1.5, as in Bansal and Yaron (2004). We gauge the magnitude of

mispricing in Table IA.IV, where we simulate 1,000 economies for 100 years and report the

cross-simulation average as well as the 10% and 90% cross-simulation quantile of two-stage

regressions. In particular, for each simulation we compute the return on wealth, the aggregate

dividend return, and the risk-free rate. We then first regress the returns of these three test

assets on consumption growth, and in the second stage expected returns on first-stage betas.

In the table, we report the second-stage estimates, in particular, the intercept, the market

price of consumption growth risk, λc, the regression R2, and the mean absolute pricing error

(MAPE).
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Table IA.IV
Consumption CAPM

We simulate 1,000 economies for 100 years. We assume that the representative agent has
an EIS of 1.5, an RRA of 10, and a rate of time preference of 0.995. In particular, for each
simulation we compute the return on wealth, the aggregate dividend return, and the risk-free
rate. We then regress the returns of these three test assets on consumption growth, and in
the second stage expected returns on first-stage betas. We report the second-stage estimates,
specifically the intercept, the market price of consumption growth risk, λc, the regression R2,
and the MAPE. In the last column, we report the average conditional pricing error on the
aggregate dividend return

Const. λc R2 MAPE αd

Mean 0.0076 0.0004 0.6248 0.0005 0.0019
10% 0.0073 −0.0000 0.0622 0.0004 0.0017
90% 0.0079 0.0007 0.9517 0.0006 0.0021

Even though a model with power utility generates an annual risk premium of only 0.29%

compared to 1.29% in our full model (see Table IA.III), the second-stage regressions explain

around 62% of the cross-sectional variation in average returns. The reason is the correlation

between consumption growth and beliefs about the mean growth rate, which falsely attributes

some of the premium for long-run risk to the (short-run) consumption growth factor. Impor-

tantly for our empirical exercise, the fit is far from perfect and the MAPE is five bp quarterly

compared to an average asset return of roughly 80 bp.

In the last column, we report the average conditional pricing error on the aggregate divi-

dend return from

αd = E∗[R]− E[R] =
Cov(M −M∗, R)

E[M ]
,

where M is the correct pricing kernel based on Epstein-Zin preferences and M∗ is the misspec-

ified pricing kernel based on power utility. This calculation follows Campbell and Cochrane

(2000). Conditionally, pricing errors are large, that is, more than half of the true risk premium.
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B. Additional Empirical Results

B.1. Alternative Estimation Specifications

To illustrate the robustness of our estimation approach, we also provide results for two

alternative specifications, both of which explicitly model service or nondurable consumption

as instruments while estimating the dynamics for total consumption growth directly. The

following table summarizes the approaches:

Method Information set

1 Total consumption, ∆c

2 Service consumption and service consumption share, ∆s & ∆v

3 Total consumption and service consumption, ∆c & ∆s

4 Total consumption and nondurable consumption, ∆c & ∆n

Method 1 is the standard approach, where the information set only contains total con-

sumption growth. We refer to the use of only the time series of total consumption in the

estimation of the Markov process, following equation (1), as the single series estimation.

Method 2 is our main specification, where the agent observes service consumption growth and

changes in the service-consumption share. In methods 3 and 4, the agent not only observes

total consumption growth but also service or nondurable consumption growth, respectively.

We refer to methods 2 to 4 as component estimation.

B.2. Statistical Evidence

The goal of this section is to elaborate on the empirical validity of the inclusion of com-

ponents of total consumption in the representative agent’s information set. We justify our

procedure in two steps. First, we assume a joint Markov process for service consumption

growth and service consumption share as in equation (11) and show in simulations that all

the component methods increase estimation efficiency relative to the single-series approach.

Second, we show that the assumptions underlying the component models, namely, simultane-

ous Markov switching in both components, are supported in the data.
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Table IA.V
Markov Chain Parameter Estimates

This table reports parameters and transition probabilities from a Markov model for con-
sumption growth with two conditional mean and volatility states. Method 1 uses only total
consumption growth (∆c), method 2 uses service consumption growth and changes in the
service consumption share (∆s and ∆v), method 3 uses total and service consumption growth
(∆c and ∆s) and method 4 uses total and nondurable consumption growth (∆c and ∆n).
The data cover 1964 to 2009.

µl µh σl σh pµll pµhh pσll pσhh

Method 1 (∆c)
0.360 0.793 0.214 0.489 92.352 87.763 94.565 95.864

(0.040) (0.062) (0.029) (0.059) (3.566) (6.131) (4.173) (5.367)

Method 2 (∆s and ∆v)
0.350 0.706 0.204 0.477 92.052 92.791 94.103 97.277

(0.033) (0.054) (0.020) (0.036) (4.857) (5.109) (3.307) (1.663)

Method 3 (∆c and ∆s)
0.351 0.706 0.206 0.475 92.179 92.922 94.106 97.297

(0.034) (0.054) (0.019) (0.035) (4.716) (4.959) (3.320) (1.648)

Method 4 (∆c and ∆n)
0.338 0.716 0.208 0.473 90.631 90.363 91.834 95.438

(0.033) (0.045) (0.023) (0.035) (4.719) (4.743) (4.135) (2.752)
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Table IA.VI
Correlations of Beliefs

This table reports the correlations between beliefs over mean states (Panel A) and volatility
states (Panel B) from a Markov model for consumption growth with two conditional mean and
volatility states. Method 1 uses only total consumption growth (∆c), method 2 uses service
consumption growth and changes in the service consumption share (∆s and ∆v), method
3 uses total and service consumption growth (∆c and ∆s), and method 4 uses total and
nondurable consumption growth (∆c and ∆n). The data cover 1964 to 2009.

Method 1 2 3 4
Panel A: Beliefs about the Mean

1 1.0000
2 0.8426 1.0000
3 0.8413 0.9999 1.0000
4 0.8879 0.9846 0.9831 1.0000

Panel A: Beliefs about the Volatility
1 1.0000
2 0.7928 1.0000
3 0.7860 0.9995 1.0000
4 0.8078 0.9423 0.9373 1.0000

To this end, we first estimate methods 1 to 4 on post-war real quarterly consumption data.

The results for the dynamics of total consumption growth are presented in Table IA.V. We

obtain standard errors for method 2 from the delta method. Two observations are important.

First, most parameter estimates are very similar across methods. Second, all but the standard

error for pµll are reduced by using component estimation methods 2 to 4 relative to single-series

method 1. In Table IA.VI, the pairwise correlation of filtered beliefs about the mean state

(Panel A) and volatility state (Panel B) further indicate that all methods yield comparable

results. Beliefs based on the single-series estimation have correlations between 0.79 and 0.89

with the beliefs estimated using components. For the three component methods, all pairwise

correlations exceed 93%.

Figure IA.1 shows the filtered beliefs of the consumption volatility state of the four meth-

ods. The high correlations are easily observable. At the same time, the single-series estimation

yields considerably noisier beliefs than the component methods. This is especially true in the
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Figure IA.1. Bayesian beliefs about the volatility state. This figure displays the
estimated Bayesian belief processes for being in the high volatility state for the four different
estimation methods for consumption dynamics. The estimation procedure follows Hamilton
(1994). We use quarterly per capita real consumption expenditure for non-durable goods and
services for the years 1952.Q1 to 2009.Q4.
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early part of the sample, and we thus expect lower power for asset pricing tests in the early

sample using the single-series method.

To illustrate the increased estimation efficiency of the component methods, we start by

assuming a joint Markov process for service consumption growth and the service consumption

share as in equation (11). Under this assumption, it is intuitive that aggregating the two

components and using only the time series of total consumption growth in the estimation of

the Markov process in equation (1) constitutes an inefficient use of the data. We confirm

in simulations that using the information contained in the two consumption components is

valuable and results in more precise estimates.

Table IA.VII shows the results from 2,000 simulations. Each simulation represents an

economy of 231 quarters as in the data. The economy is described by equation (11) with

population parameters based on the empirical point estimates from our main specification

(method 2 in Table IA.V). We report the mean and standard deviation of the estimates as

well as the median standard error across simulations. Method 1 uses only total consumption

growth (∆c), method 2 service consumption growth and changes in the service consumption

share (∆s and ∆v), method 3 total and service consumption growth (∆c and ∆s), and method

4 total and nondurable consumption growth (∆c and ∆n).

Comparing the mean estimates across methods confirms that the point estimates are

largely unaffected by the estimation approach. The minor variations are well within what

should be expected statistically. In contrast, standard deviations and standard errors are dra-

matically reduced in component estimation methods 2 to 4 compared to single-series method

1. At the same time, there are no systematic differences across the three component methods

in terms of estimation precision.

While this simulation evidence is intuitive, it does not address the broader concern of

whether the consumption components (service and nondurable expenditures) are indeed jointly

Markov switching. We now show that (i) means and volatilities of both service and nondurable

consumption growth are well described by a Markov model, (ii) means and volatilities of the

two series switch simultaneously, and (iii) the component estimation does result in a good
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Table IA.VII
Simulation Evidence of the Joint Markov Model for Consumption Growth

This table presents simulation evidence of the joint Markov model for service consumption
growth and service consumption share as in equation (11). We simulate 2,000 economies for
231 quarters as in the data. We report the mean and standard deviation of estimates as well as
the median standard error across simulations. Method 1 uses only total consumption growth
(∆c), method 2 uses service consumption growth and changes in the service consumption
share (∆s and ∆v), method 3 uses total and service consumption growth (∆c and ∆s), and
method 4 uses total and nondurable consumption growth (∆c and ∆n).

µl µh σl σh pµll pµhh pσll pσhh
Population 0.350 0.706 0.204 0.477 92.052 92.791 94.103 97.277

Method 1 (∆c)
Mean Est 0.335 0.721 0.212 0.519 88.943 89.864 91.298 94.386
Std Est 0.080 0.077 0.051 0.054 9.227 8.859 9.986 8.693
Median SE 0.045 0.043 0.027 0.040 5.198 4.848 4.019 2.558

Method 2 (∆s and ∆v)
Mean Est 0.349 0.711 0.221 0.512 90.745 91.475 92.983 96.127
Std Est 0.048 0.044 0.034 0.036 5.694 5.063 5.183 4.404
Median SE 0.037 0.035 0.019 0.032 3.837 3.627 3.303 1.920

Method 3 (∆c and ∆s)
Mean Est 0.350 0.709 0.224 0.509 90.735 91.426 92.682 95.997
Std Est 0.053 0.047 0.037 0.035 5.987 5.669 7.211 4.737
Median SE 0.036 0.034 0.019 0.031 3.816 3.605 3.315 1.920

Method 4 (∆c and ∆n)
Mean Est 0.349 0.712 0.221 0.513 90.726 91.428 92.609 96.043
Std Est 0.049 0.046 0.039 0.037 5.821 5.276 6.030 3.464
Median SE 0.036 0.035 0.019 0.032 3.813 3.640 3.354 1.977
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overall fit of the data.

To test for joint switching of the conditional moments of service and nondurable consump-

tion growth, we assume the joint Markov dynamics:

∆st+1 = µst + σst ε
s
t+1 ∆nt+1 = µnt + σnt ε

n
t+1,

where ∆s denotes log service consumption growth and ∆n log nondurable consumption

growth. For i ∈ {s, n}, µit denotes the conditional expectation, σit denotes the conditional

standard deviation, and εit+1 is standard normal with Covt(εst+1, ε
n
t+1) = %sn.

Our empirical model has four states for each series, two for the conditional mean and

two for the conditional volatility. A test for joint switching of both moments across the two

consumption components would thus require the estimation of a 16 × 16 Markov transition

matrix for the unrestricted case. This is not feasible given the relatively short time series for

consumption data. Consequently, we reduce the dimensionality of the problem and first test

for joint switching in the conditional mean in nondurable and service consumption growth,

holding the volatility state constant:

∆st+1 = µst + σsεst+1 ∆nt+1 = µnt + σnεnt+1.

In Panel A of Table IA.VIII, we present parameter estimates from the unrestricted model

that allows the mean states of both components to switch freely. In other words, one series can

be in state 1 while the other one is in state 2. The estimates in the transition matrix already

suggest that the states “12” and “21” are not very persistent. We estimate the restricted

model in which the conditional means of the two series switch jointly in Panel B. In Panel C,

we perform a likelihood ratio test on the parameter restrictions. Under the null hypothesis,

the test statistic of 5.28 is χ2-distributed with 10 degrees of freedom. The 10% critical value

is 16.00, suggesting that the restriction of joint switching does not statistically reduce the

overall model fit.

In Table IA.IX, we test for joint switching in the conditional volatility assuming a constant

mean:

∆st+1 = µs + σst ε
s
t+1 ∆nt+1 = µn + σnt ε

n
t+1.
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Table IA.VIII
Test for Joint Switching in the Mean

This table reports parameter estimates and transition probabilities for a joint Markov model
for service (∆s) and nondurable log consumption growth (∆n) with two states for each con-
ditional mean:

∆st+1 = µst + σsεst+1 ∆nt+1 = µnt + σnεnt+1,

where for i ∈ {s, n}, µit denotes the conditional expectation, σi denotes the constant standard
deviation, and εit+1 is standard normal with Covt(εst+1, ε

n
t+1) = %sn. In the unrestricted model

(Panel A), the states for the expected growth rates of the two consumption components can
switch separately, while the restriction in Panel B enforces states to switch jointly. Panel C
reports estimated values of the likelihood function and performs a likelihood ratio test on the
restrictions. The data cover 1964 to 2009.

Panel A: Unrestricted Model

Parameter Estimates
µs1 µs2 µn1 µn2 σs σn %sn
−0.08 0.69 −0.40 0.51 0.38 0.67 0.30
(0.09) (0.03) (0.25) (0.06) (0.02) (0.04) (0.07)

Transition Matrix
11 22 12 21

11 0.74 0.00 0.00 0.26
(0.36) (0.24) (0.34)

22 0.04 0.96 0.00 0.00
(0.02) (0.02) (0.00)

12 0.57 0.00 0.00 0.43
(0.82) (0.28) (0.40)

21 0.00 0.56 0.21 0.23
(0.10) (0.28) (0.20)

Panel B: Joint Switching Model

Parameter Estimates
µs1 µs2 µn1 µn2 σs σn %sn

0.28 0.83 0.08 0.57 0.37 0.71 0.31
(0.05) (0.04) (0.08) (0.07) (0.02) (0.03) (0.07)

Transition Matrix
11 22

11 0.91 0.09
(0.04)

22 0.08 0.92
(0.03)

Panel C: Test on Parameter Restrictions

Unrest.LL Rest.LL χ2 − Stat 10%−Crit. p− V alue
1764.18 1761.54 5.28 16.00 0.87
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Table IA.IX
Test for Joint Switching in the Volatility

This table reports parameter estimates and transition probabilities for a joint Markov model
for service (∆s) and nondurable log consumption growth (∆n) with two states for each con-
ditional volatility:

∆st+1 = µs + σst ε
s
t+1 ∆nt+1 = µn + σnt ε

n
t+1,

where for i ∈ {s, n}, µi denotes the constant expectation, σit denotes the conditional stan-
dard deviation, and εit+1 is standard normal with Covt(εst+1, ε

n
t+1) = %sn. In the unrestricted

model (Panel A), the states for growth rate volatility of the two consumption components
can switch separately, while the restriction in Panel B enforces states to switch jointly. Panel
C reports estimated values of the likelihood function and performs a likelihood ratio test on
the restrictions. The data cover 1964 to 2009.

Panel A: Unrestricted Model

Parameter Estimates
µs µn σs1 σs2 σn1 σn2 %sn

0.56 0.38 0.27 0.51 0.38 0.94 0.39
(0.03) (0.04) (0.02) (0.03) (0.01) (0.07) (0.06)

Transition Matrix
11 22 12 21

11 0.92 0.00 0.08 0.00
(0.04) (0.17) (0.06)

22 0.04 0.68 0.00 0.28
(0.04) (0.15) (0.09)

12 0.00 0.00 0.23 0.77
(0.07) (0.98) (0.15)

21 0.00 0.88 0.00 0.12
(0.03) (0.31) (0.23)

Panel B: Joint Switching Model

Parameter Estimates
µs µn σs1 σs2 σn1 σn2 %sn

0.56 0.38 0.28 0.52 0.42 0.86 0.38
(0.03) (0.04) (0.04) (0.03) (0.05) (0.06) (0.06)

Transition Matrix
11 22

11 0.91 0.09
(0.05)

22 0.04 0.96
(0.03)

Panel C: Test on Parameter Restrictions

Unrest.LL Rest.LL χ2 − Stat 10%−Crit. p− V alue
1759.26 1756.08 6.38 16.00 0.78
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We estimate the unrestricted model in Panel A, the restricted model in Panel B, and perform

a likelihood ratio test on the parameter restrictions in Panel C. Similar to the results of Table

IA.VIII, the p-value of 0.78 suggests that the restricted model of joint volatility switching

cannot be rejected.

B.3. Robustness of Cross-Sectional Asset Pricing

The previous section shows that the component-based consumption specifications domi-

nate the single-series approach econometrically. In this section, we turn our attention to the

asset pricing implications. The aim is to show that the pricing of consumption volatility risk is

generally robust to different specifications of the consumption process. To this end, we repeat

the exercises of Tables II and IV in the paper using different specifications for the Markov

chain for consumption growth.

Table IA.X shows estimated prices of risk from the second-pass regressions of average

excess returns on risk loadings estimated in the first pass as well as the second-pass R2 and

MAPE. The test assets are the 25 size-value portfolios (Panel A), 40 industry-value port-

folios (Panel B), and 25 net share issuance-size portfolios (Panel C). Consumption dynamic

estimates are based only on total consumption growth (method 1).

This table corresponds to Table II in the paper, which uses service consumption growth

and changes in the service consumption share (∆s and ∆v). The coefficients on consumption

volatility exposure are all strongly negative, albeit not always statistically significant when the

whole sample (1964 to 2009) is used. In accordance with the observation that the single-series

estimation yields very noisy volatility estimates in the early sample, we repeat the analysis on

a 35-year subsample starting in 1975. The coefficients are generally similar on the subsample,

but now all are statistically significant.

Volatility risk pricing across the different component estimation methods (2 to 4) is sum-

marized in Table IA.XI. This table repeats the analysis from Table II in the paper (method

2), and shows that the results using methods 3 (∆c and ∆s) and 4 (∆c and ∆n) are very

similar.

Table IA.XII shows average equally weighted (EW) and value-weighted (VW) monthly
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Table IA.X
Volatility Risk Pricing Based on Single-Series Estimation

This table reports market prices of risk from cross-sectional regressions of average excess
returns on estimated factor loadings. The factors considered are consumption growth, ∆ct,
and changes in beliefs about the first moment, ∆µ̂t, and second moment, ∆σ̂t, of consumption
growth. Consumption dynamics are estimated using the single-series approach (method 1). In
Panel A the test assets are the 25 size-value portfolios, in Panel B 40 industry-value portfolios,
and in Panel C 25 net share issuance-size portfolios. For each specification, we report the
estimated prices of risk, the R2, and the MAPE. t-statistics are corrected for estimation error
in the first stage as proposed by Shanken (1992) and Newey and West (1987) adjusted using
four lags. The sample period starts in 1964 or 1975, and ends in 2009.

∆c ∆µ̂ ∆σ̂ R2 MAPE
(t-stat) (t-stat) (t-stat)

Panel A: 25 Value-Size Portfolios

1964–2009 0.21 0.02 −0.13 80.51 1.11
(0.14) (0.07) (−1.31)

1975–2009 0.30 0.01 −0.07 73.52 1.36
(0.52) (0.13) (−2.15)

Panel B: 40 Industry-Value Portfolios

1964–2009 0.42 −0.03 −0.07 58.35 1.96
(0.75) (−0.67) (−2.20)

1975–2009 0.61 −0.03 −0.06 61.48 2.11
(1.19) (−0.45) (−2.36)

Panel C: 25 NSI-Size Portfolios

1964–2009 0.09 0.13 −0.09 54.60 2.67
(0.07) (0.56) (−1.58)

1975–2009 0.22 0.03 −0.09 54.63 2.99
(0.36) (0.27) (−1.90)
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Table IA.XI
Volatility Risk Pricing Based on Component Estimation

This table reports market prices of risk from cross-sectional regressions of average excess
returns on estimated factor loadings. The factors considered are consumption growth, ∆ct,
and changes in beliefs about the first moment, ∆µ̂t, and second moment, ∆σ̂t, of consumption
growth. Consumption dynamics are estimated using the component approaches based on ∆s
and ∆v (method 2), ∆c and ∆s (method 3), and ∆c and ∆n (method 4). In Panel A the test
assets are the 25 size-value portfolios, in Panel B 40 industry-value portfolios, and in Panel C
25 net share issuance-size portfolios. For each specification, we report the estimated prices of
risk, the R2, and the MAPE. t-statistics are corrected for estimation error in the first stage
as proposed by Shanken (1992) and Newey and West (1987) adjusted using four lags. The
data cover 1964 to 2009.

Method ∆c ∆µ̂ ∆σ̂ R2 MAPE
(t-stat) (t-stat) (t-stat)
Panel A: 25 Value-Size Portfolios

2 1.24 0.12 −0.06 80.55 1.16
(0.71) (0.55) (−2.23)

3 1.36 0.10 −0.06 79.94 1.19
(0.72) (0.58) (−2.14)

4 0.74 0.03 −0.09 79.38 1.13
(0.58) (0.18) (−2.22)

Panel B: 40 Industry-Value Portfolios

2 0.70 −0.03 −0.04 50.94 2.10
(1.54) (−0.56) (−2.04)

3 0.71 −0.02 −0.04 50.58 2.12
(1.57) (−0.47) (−2.07)

4 0.56 −0.03 −0.05 59.37 1.96
(1.22) (−0.70) (−2.12)

Panel C: 25 NSI-Size Portfolios

2 0.68 0.10 −0.09 42.92 3.10
(0.50) (0.41) (−2.14)

3 0.72 0.08 −0.09 37.89 3.27
(0.55) (0.46) (−2.36)

4 0.18 0.07 −0.12 34.98 3.16
(0.12) (0.29) (−1.15)
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Table IA.XII
Portfolios Formed on Consumption Volatility Exposure

This table reports average equally weighted (EW) and value-weighted (VW) monthly returns
in percent of portfolios based on estimated consumption volatility loadings. The loadings
are obtained from 10-year rolling time-series regressions of individual excess returns on log
consumption growth, changes in the perceived conditional mean, and changes in the perceived
conditional volatility of consumption growth using quarterly data. We then form five portfolios
based on the estimated consumption volatility exposure and hold the investments for one year.
The column “High−Low” shows returns of a zero investment portfolio that is long in the high
exposure portfolio and short in the low exposure portfolio. t-statistics are based on Newey
and West (1987) adjusted standard errors using 12 lags. Panel A repeats the results from the
paper using the component estimation (Panel C of Table IV). Panel B shows the portfolio
returns if consumption dynamics are estimated using the single-series approach (method 1).
For both Panels A and B, the sample period is January 1964 to December 2010. Panel C
repeats the analysis in Panel B, but using a subsample from January 1975 to December 2010.

Panel A: Component Estimation (1964–2010)
Low Med High High−Low

EW 1.50 1.29 1.14 1.12 1.00 −0.50
(5.79) (5.86) (5.48) (5.58) (4.68) (−4.30)

VW 1.27 0.99 0.88 0.85 0.70 −0.57
(5.29) (4.96) (4.87) (4.45) (3.36) (−3.63)

Panel B: Single-Series Estimation (1964–2010)
Low Med High High−Low

EW 1.35 1.24 1.14 1.13 1.13 −0.22
(5.23) (5.90) (5.75) (5.89) (5.06) (−2.07)

VW 1.15 0.92 0.90 0.87 0.94 −0.21
(4.83) (4.36) (4.89) (4.84) (4.61) (−1.38)

Panel C: Single-Series Estimation (1975–2010)
Low Med High High−Low

EW 1.66 1.50 1.36 1.35 1.27 −0.39
(5.62) (6.12) (5.85) (6.15) (4.93) (−3.22)

VW 1.46 1.13 1.09 1.07 1.04 −0.42
(5.45) (4.42) (5.16) (5.22) (4.34) (−2.30)
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returns in percent of quintile portfolios based on estimated consumption volatility loadings.

This corresponds to Panel C of Table IV in the paper, which is also repeated in Panel A. The

sorts in Panels B and C are based on consumption dynamics estimated using the single-series

approach (method 1), and differ in their sample length: Panel B presents results for the entire

sample, while Panel C uses the shortened sample starting in 1975.

In all specifications, average returns decrease in consumption volatility exposure. The

magnitude, however, varies somewhat across methods. The estimated difference between the

high and low consumption volatility portfolios is about 50 bp per month in the component

estimation. The single-series approach over the whole sample yields 21 to 22 bp per month,

with an insignificant estimate for value-weighted portfolios. In the shortened sample, return

differences are around 40 bp and highly significant. This overall evidence is consistent with

large observed noise in the early period of the single-series consumption volatility estimation.

If consumption dynamics are measured with less noise (component estimation), or if the early

part of the sample is excluded, the results are much stronger.

B.4. Relation to Coskewness Risk

Going back to Kraus and Litzenberger (1976), a coskewness premium rewards agents with

a preference for skewed portfolio returns when asset payoffs are nonlinear in the market return.

This premium can arise in a setting with normally distributed market returns that are i.i.d.

over time. In contrast, a volatility risk premium requires recursive preferences and persistent

shocks to aggregate uncertainty.

Since coskewness risk is estimated as covariance with squared market returns, it seems

reasonable to assume that it is related to volatility exposure. In Table IA.XIII, we test for a

possible relation between our consumption volatility risk factor and coskewness. In particular,

we regress the CVR factor on the Fama-French and momentum factors augmented by the

squared market return, similar to Table VII, Panel C in the paper. It is important to note

that the intercepts in this case cannot be interpreted as performance measures as the square

of market returns is not a portfolio return but a payoff. We first observe that the estimated

coefficients for coskewness are statistically insignificant. Moreover, CVR loads negatively on
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Table IA.XIII
Consumption Volatility Risk and Coskewness

This table extends Panel C of Table VII and reports coefficients from time-series regressions
of the CVR portfolio on market, size, value, and momentum factors as well as the squared
market return. The CVR portfolio is the return of holding a long position in the value-
weighted quintile of stocks with high volatility risk (βiσ,t) and a short position in low volatility
risk, as reported in Panel C of Table IV. t-statistics are based on Newey and West (1987)
adjusted standard errors using 12 lags. The sample period is January 1964 to December 2010
with a total of 564 monthly observations.

Model α βMKT βSMB βHML βMOM βMKT 2

CoSkew −0.46 −0.01 −0.00
(−2.73) (−0.14) (−1.04)

CoSkew 3-F −0.29 −0.03 −0.14 −0.23 −0.01
(−1.77) (−0.59) (−1.34) (−2.35) (−1.54)

CoSkew 4-F −0.10 −0.06 −0.14 −0.28 −0.14 −0.01
(−0.61) (−1.47) (−1.21) (−2.98) (−1.98) (−1.89)

coskewness. Since the market price of coskewness risk is negative (as suggested by Harvey

and Siddique (2000)), controlling for coskewness strengthens CVR.

B.5. Seasonal Adjustment

The consumption data used in this paper are quarterly, per capita, real consumption of

nondurable goods and services, and seasonally adjusted at annual rates. Ferson and Harvey

(1992) investigate the asset pricing implications of consumption growth rates obtained from

data that are seasonally adjusted with the X-12-ARIMA filter developed by the U.S. Census

Bureau. Ex ante, the impact of the filter on latent volatility regimes is not obvious.

To measure the impact of the X-12-ARIMA filter, we simulate 1,000 time series of 200

quarterly log consumption growth rates generated by the Markov model estimated in Table I.

We then perturb every fourth-quarter data point by +5% and every first-quarter data point

by -5%, which approximately generates the seasonality observed in the discontinued series for

seasonally unadjusted quarterly consumption data. We transform the seasonally perturbed
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Table IA.XIV
Effect of X-12-ARIMA Filter

We simulate 1,000 time series of 200 quarterly log consumption growth rates generated from
the Markov model estimated in Table I. We then perturb every fourth-quarter data point by
+5% and every first-quarter data point by -5%, which approximately generates the seasonality
observed in the discontinued series for seasonally unadjusted quarterly consumption data. We
transform the seasonally perturbed series into consumption levels and apply the X-12-ARIMA
filter to get seasonally adjusted consumption data. We then estimate the four-state Markov
model of Section I on both the original and the seasonally adjusted data.

Panel A: Summary Statistics for Estimates of Undisturbed and X-12 Data
µl µh σl σh pllµ phhµ pllσ phhσ

Mean 0.36 0.79 0.20 0.49 92.26 93.83 92.39 93.77
Mean X-12 0.37 0.80 0.19 0.47 91.94 93.52 90.36 89.96

Median 0.36 0.79 0.20 0.49 94.11 95.67 94.76 95.95
Median X-12 0.36 0.79 0.18 0.46 93.38 94.90 93.64 93.47

SD 0.08 0.06 0.04 0.06 8.18 7.98 9.07 6.91
SD X-12 0.08 0.05 0.04 0.10 6.38 5.09 12.40 11.70

5th Percent 0.28 0.71 0.15 0.41 77.67 85.49 78.57 79.93
5th Percent X-12 0.27 0.72 0.13 0.38 79.36 84.83 66.38 67.92

95th Percent 0.47 0.87 0.27 0.57 98.30 98.91 98.75 99.19
95th Percent X-12 0.48 0.88 0.24 0.57 97.89 98.66 98.60 99.01

Panel B: Median Correlations of Beliefs from Undisturbed and X-12 Data

ρµ 0.98 ρσ 0.90
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series into consumption levels and apply the X-12-ARIMA filter to get seasonally adjusted

consumption data. Last, we estimate the four-state Markov model of Section I on both the

original and the seasonally adjusted data.

Table IA.XIV shows summary statistics of the estimated Markov chain parameters. We

observe that the seasonal adjustment has negligible influence on the estimated states and

state-transitions. Moreover, the median correlation between beliefs over states estimated

from the original and the filtered data is very high (0.98 for the mean state, 0.90 for the

standard deviation state). We conclude that the Markov model is robust to the X-12-ARIMA

filter.
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